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GLOSSARY OF TERMS 

	
  
Algorithm: A recipe consisting of rules, processes, or equations to be followed in calculations or 
other problem-solving operations, especially those executed by a computer. M&V baseline 
models may be implemented in the form of automated or semi-automated algorithms. *Adapted 
from Google.	
  
Approach: The general strategy by which energy savings are quantified, e.g., IPMVP Option A, 
B, C,or D, randomized control trials, and engineering calculations.	
  
ASHRAE Guideline 14: A document that provides guidance on minimum acceptable levels of 
performance for quantifying measurement-based energy and demand savings for commercial 
transactions. The document is intended to provide sufficient direction so that savings results are 
sufficiently accurate and well-specified for use in applications that include payment or credits. 
*Adapted from ASHRAE Guideline 14-2014.	
  
Baseline Energy Use or Demand: measured consumption that occurs during the baseline period, 
before an efficiency measure is implemented. This is distinct from the energy use during the 
measure post-installation period. *Aligns with terminology in IPMVP 2012 and ASHRAE 
Guideline 14-2002.	
  
Baseline Period: The time period before an efficiency measure is implemented, during which 
energy use is characterized for savings quantification. The baseline period may also be referred to 
as the measure ‘pre’ period. *Aligns with terminology in IPMVP 2012 and ASHRAE Guideline 
14-2002.	
  
Baseline Model: the set of arithmetic factors, equations, or data used to describe the relationship 
between energy use or demand and other baseline period parameter data. *Adapted from 
ASHRAE Guideline 14-2002.	
  
Developer: A person, company, or other entity that creates a baseline model or algorithm or 
M&V tool. Developers may comprise vendors, service providers, researchers, or those who 
provide M&V tools for no fee.	
  
Energy Savings: the difference between baseline energy use or demand, projected to measure 
post-installation conditions, and post-installation energy use or demand. According to this 
formulation, the savings can be considered avoided energy use or demand, since the post-period 
energy use or demand would have been that much higher. *Adapted from ASHRAE Guideline 
14-2002 and IPMVP, 2012.	
  
International Performance Measurement and Verification Protocol (IPMVP): a framework 
to determine energy and water savings resulting from the implementation of an energy or water 
efficiency program. The IPMVP covers best practice techniques for fuel saving measures, water 
efficiency measures, load shifting and energy reductions through installation or retrofit of 
equipment, and/or modification of operating procedures. *Adapted from IPMVP 2012.	
  
Measure ‘post-installation’ period: the time period after an efficiency measure is implemented, 
during which energy use or demand is measured to determine energy savings. *Adapted from 
ASHRAE Guideline 14-2002, and IPMVP, 2012.	
  
Measurement and Verification (M&V): the process of quantifying energy or demand savings 
by comparing measured energy use or demand before and after implementation of an efficiency 
measure, including adjustments  to ‘normalize’ use in the two periods to a set of common 
conditions. ‘Routine’ adjustments are often captured in the explanatory variables used in the 
baseline model. *Adapted from IPMVP 2012.	
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M&V 2.0: the leveraging of smart grid investments, advances in interval meter data, nonintrusive 
load monitoring, and equipment-embedded sensors and controls to provide new tools with 
potential to reduce the cost of M&V, produce more timely results with higher confidence and 
transparency, and thereby increase the acceptance of the savings calculations. *Adapted from 
Electric Light & Power article “EM&V 2.0 – New tools for measuring energy efficiency program 
savings”, February 2014.	
  
Method: a calculation, or baseline model or algorithm, and its associated required data, that is 
created by a developer for the purpose of M&V of energy savings. Methods may correspond to 
any of a diverse set of M&V approaches.	
  
Model Performance Assessment: the process of testing and evaluating the quality or robustness 
of a baseline model or algorithm, according to key metrics of interest.  	
  
Model Performance Benchmark: a point of reference that can be used to compare or interpret 
model performance. The performance of commonly used change-point and regression models 
published in the public domain provide a useful benchmark for baseline model performance 
assessments.  *Adapted from Google.	
  
Non-Routine Adjustment: a modification made to the measured energy use to account for 
changes in energy use or demand that are not explained by the usual influences on energy use, 
such as ambient conditions, operation schedule, occupancy, and so on. These usual influences, or 
‘routine adjustments’ are often captured in the baseline model. Non-routine adjustments can be 
accounted for with additional monitoring and analysis, engineering calculations, or other means, 
provided that they are well documented, reasonable, and transparent. *Adapted from IPMVP, 
2012.	
  
Performance Criteria: a level of performance required by a user of a baseline model, or M&V 
method. These criteria may be expressed as critical minimum values of key metrics of interest, 
and may make use of model performance benchmarks.	
  
Performance Metric(s): one or more measures to assess the ability of a model to predict energy 
use. To assess the performance of a baseline model, a performance metric, such as root mean 
squared error, is computed between model predictions and energy meter data. A detailed 
description of proposed and candidate metrics for M&V baseline model performance assessment 
is provided in a separate document.	
  
Standard: a procedure or protocol set up and established by an authority as a rule for the measure 
of performance, or quality. *Adapted from Merriam Webster dictionary.	
  
Testing Procedure: An established or official way to evaluate the performance of M&V 
methods, according to set of relevant metrics. *Adapted from returns from Google’s define search 
option.	
  
Testing Protocol: a formal procedure to evaluate the performance M&V methods, including 
details of how the procedure is executed, including test data, and blinds required to test methods 
that are embedded within automated or semi-automated software tools. *Adapted from Merriam 
Webster dictionary and returns from Google’s define search option.	
  
Vendor: a person or company who offers an M&V tool for sale. Vendors may develop 
proprietary models or use models from the public domain. In keeping with standard business 
definitions, entities that offer M&V tools for no fee are considered tool providers, as opposed to 
vendors.  A vendor may also be a developer if the person or company is also the designer of an 
M&V analysis tool.	
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ABSTRACT 

	
  
This report documents the application of a general statistical methodology to assess the accuracy 
of baseline energy models, focusing on its application to Measurement and Verification (M&V) 
of whole-building energy savings. 	
  
	
  
Trustworthy savings calculations are critical to convincing investors in energy efficiency projects 
of the benefit and cost-effectiveness of such investments and their ability to replace or defer 
supply-side capital investments. However, today’s methods for measurement and verification 
(M&V) of energy savings constitute a significant portion of the total costs of efficiency projects. 
They also require time-consuming data acquisition and often do not deliver results until years 
after the program period has ended. A spectrum of savings calculation approaches are used, with 
some relying more heavily on measured data and others relying more heavily on estimated, 
modeled, or stipulated data.	
  
	
  
The rising availability of “smart” meters, combined with new analytical approaches to 
quantifying savings, has opened the door to conducting M&V more quickly and at lower cost, 
with comparable or improved accuracy. Energy management and information systems (EMIS) 
technologies, not only enable significant site energy savings, but are also beginning to offer M&V 
capabilities. This paper expands recent analyses [Price et al. 2013; Granderson and Price 2014; 
J.Granderson et al. 2015] of public-domain whole-building M&V methods, focusing on more 
novel baseline modeling approaches that leverage interval meter data using a larger set of 
buildings.	
  
	
  
We present a testing procedure and metrics to assess the performance of whole-building M&V 
methods. We then illustrate the test procedure by evaluating the accuracy of ten baseline energy 
use models, against measured data from 537 buildings. We also provide conclusions regarding 
the accuracy, cost, and time trade-offs between more traditional M&V, and these emerging 
automated methods. Finally we discuss the potential evolution of M&V to better support the 
energy efficiency industry through low-cost approaches, and the long-term agenda for validation 
of building energy analytics.	
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1. INTRODUCTION 

 	
  
Measurement and verification (M&V) for energy efficiency measures can be critical to 
establishing the value of efficiency both to building owners and to utility programs incentivizing 
savings. However, M&V can be quite costly and time consuming, with questions remaining as to 
the accuracy of the estimated savings. Depending on the M&V methods used and whether third 
party evaluation is included, M&V costs can range from 1-5% of project portfolio costs 
[Jayaweera et al. 2013]. Today, the growing availability of data from smart meters and devices, 
combined with time series data analytics offers the potential to streamline the M&V process 
through increased levels of automation.  
 
Whole-building approaches to energy efficiency have the potential to generate deeper savings 
than single-measure approaches. Many of the technologies included in whole-building efficiency 
strategies, such as EIS (Energy Information Systems) and ongoing commissioning systems, not 
only enable energy savings of up to 20% [Granderson et al. 2011a], but include the baselining 
functionality that can be used to automatically quantify savings [Granderson et al. 2009; 
Granderson et al. 2011b]. Automated quantification of savings functionality is currently available 
in a range of energy management tools, including onsite or software-as-a-service software 
offerings that track monthly or interval energy consumption for individual sites or portfolios of 
buildings. A recent study by Portland Energy Conservation Inc. (PECI) for the Northwest Energy 
Efficiency Association documented commercial energy management tools with functionality for 
M&V applications [Kramer et al. 2013]. 
	
  
Diverse industry stakeholders groups have expressed interest and engagement in the topics of 
streamlining the M&V process, leveraging automation and emerging analytics tools, and 
validating whole-building approaches to M&V. For example, the State and Local Energy 
Efficiency Action Network (SEE Action) EM&V working group, utility members of the 
Consortium for Energy Efficiency (CEE), efficiency program implementers and evaluators, and 
energy managers from the public and private sector are actively pursing these concepts in 
workshops, conferences, and discussion forums. Representatives from these groups and others 
participated in the Technical Advisory Group for this project to provide feedback and direction to 
the work, for maximum industry value and impact. Although emerging tools and analytical 
methods hold great promise in reducing the cost and time required for M&V in the commercial 
buildings sector, several questions relating to their use remain to be answered, for example:  

• What metrics should be used to quantify the performance of these tools?  
• How accurate are automated baseline models that utilize interval meter data?  
• How can proprietary tools that automate gross savings calculations be evaluated?  
• How can one tool or model be compared to another?  

 
While resources such as the IPMVP [EVO 2012] and ASHRAE Guideline 14 [ASHRAE 2014], 
establish procedural and quantitative requirements for baseline model construction, goodness-of-
fit to data during the model training period, and rules of thumb for model application given 
different expected depths of savings, they do not provide a general means of assessing model 
performance during a prediction period. The testing procedure presented in this work extends the 
principles in these existing industry resources to quantify model predictive accuracy beyond the 
training period, and suggests key performance metrics to quantify model accuracy for use cases 
focused on efficiency M&V.  
 
In summary, this report evaluates the predictive accuracy of seven developer-submitted baseline 
models for M&V, as well as three models developed by the researchers at Lawrence Berkeley 
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National Laboratory. The models were tested using whole-building electric interval meter data 
from 537 buildings. Section 2 of this report describes the testing procedure in further detail, 
characterizes the models that were tested, and presents the primary metrics of focus for this 
investigation. Section 3 contains quantitative results from applying the test procedure to the 
models, and Section 4 includes a discussion of model performance accuracy. Next steps and 
future work are summarized in Section 5.	
  

 
2. METHODOLOGY 

2.1 Overview 
The evaluation of model predictive accuracy that is presented in this report is based on a 4-step 
testing procedure, generally characterized as statistical cross validation using large test datasets. 
This procedure is depicted in Figure 1. The test dataset comprises interval meter data and 
independent variable data, such as outside air temperature, for dozens to hundreds of buildings. 
These buildings are “untreated” in terms of efficiency interventions. That is, they are not known 
to have implemented major efficiency measures. 	
  
	
  
The data for each building is divided into hypothetical training periods and prediction periods, 
and meter data from the prediction period is “hidden” from the model. The trained model is used 
to forecast the load throughout the prediction period, and predictions are then compared to the 
actual meter data that had been hidden. Figure 2 shows an example of actual, and model-
predicted data for a 12-month training period and a 12-month prediction period. Performance 
metrics that quantify the difference between the model prediction and the actual load are 
calculated and used to characterize accuracy. This test procedure is documented in further detail 
in previous publications [Price et al. 2013, Granderson and Price 2014, J.Granderson et al 2015]. 
It shares important similarities to the approaches used in the ASHRAE ‘shootouts’ of the mid and 
late 1990s [Haberl & Thamilseran 1998; Kreider & Haberl 1994]. In both cases, cross-validation 
is used to determine model error, and in both cases, similar performance metrics are considered. 
However, the ASHRAE shootouts were limited to data from a total of three buildings, and the 
cross-validation was conducted during a short subset of the model training period. The ASHRAE 
competitions considered total energy use from a sum of submetered quantities, but the analyses 
presented in this work are constrained to data and models of whole building electric metering 
because that is the only meter data that was available in our dataset; it is also the type of interval 
data most readily available in today’s buildings.    
	
  

	
  
Figure 1: Schematic of the general methodology used to evaluate the performance of automated 

M&V methods 
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Figure 2. Actual and model-predicted energy data, overlaid with outside air temperature, for a 12-
month training period and 12-month prediction period. 

 
An important feature of this test procedure is that it can be used to objectively assess the 
predictive accuracy of a model, without needing to know the specific algorithm, or the underlying 
form of the model. Therefore, proprietary tools can be evaluated while protecting the developer’s 
commercial intellectual property. In addition, it provides a general approach to evaluate the errors 
in calculated energy savings, according to diverse pre- and post-measure time horizons, and large 
test sets of building energy data. 	
  

 
2.2 Test Data 
	
  
The test dataset for the analyses presented in this paper comprised 537 commercial buildings 
from multiple climate zones, and is characterized in Table 1. Note that our initial dataset 
comprised 587 buildings from which we excluded 50, mainly because of corrupted data and long 
periods of missing data. For each building, 15-minute whole-building electricity data was paired 
with zip-code based data for outside air temperature. Buildings in ASHRAE Climate Zone 3 were 
from Northern and Central California and those from Climate Zone 4 were from the Northwest 
and Mid-Atlantic regions. Figure 3 shows the ASHRAE Climate Zones overlaid on a map of the 
Unites States.	
  
	
  
	
  

 
 

Table 1. Summary of Climate Zones of buildings used to test model performance	
  
	
  

ASHRAE 
Climate 

Zone	
  
1 (Very Hot)	
   2 (Hot)	
   3 (Warm)	
   4 (Mixed)	
   5 (Cool)	
   6 (Cold)	
   7 (Very Cold)	
  

Building 
Count	
  

1	
   15	
   277	
   237	
   5	
   1	
   1	
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Figure 3: US Map with ASHRAE-IECC Climate Zones [Baechler et al. 2010]. 	
  

	
  
	
  

2.3 Description of Models Tested 

Ten baseline models were evaluated in this study, comprising a cross-section of approaches used 
in commercial EMIS technologies, as well as approaches that are documented in the literature, 
and/or developed by the academic building research community. The models were selected 
through a solicitation process. Models that were selected were novel, but not widely used in 
practice and were in alignment with the 2.0 principles of leveraging new analytical approaches. 
The models are described below, with references and a description for those that are published in 
the literature. While the models may be able to accommodate additional independent variables 
were they available, outside air temperature, date, and time were the only variables for which it 
was possible to build a large dataset comprising hundreds of buildings from diverse climates. 
These models are further explained in the Appendix.	
  
M1. Combination principle component analysis and bin modeling, developed by Buildings Alive 
Pty. Ltd., of Sydney Australia. 
 
M2. Combination Random Forest, Extra-Trees (extremely randomized trees) and Mean Week, 
developed by Paul Raftery and Tyler Hoyt at the Center for the Built Environment, University of 
California, Berkeley. 

M3. Advanced regression including a term for drift, developed by Gridium Inc. 
M4. Mean Week – predictions depend on day and time only. For example, the prediction for 
Tuesday at 3 PM is the average of all of the data for Tuesdays at 3 PM. Therefore, there is a 
different load profile for each day of the week, but not, for example, for each week in a month or 
each month in the year. This is a simplistic ‘naïve’ model that was intentionally included for 
comparative purposes. 
M5. Time-of-Week-and-Temperature [Mathieu et al. 2011]: the predicted load is a sum of two 
terms: (1) a “time of week effect” that allows each time of the week to have a different predicted 
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load from the others, and (2) a piecewise-continuous effect of temperature. The temperature 
effect is estimated separately for periods of the day with high and low load, to capture different 
temperature slopes for occupied and unoccupied building modes. 
M6. Weighted Time-of-Week-and-Temperature [Piette et al. 2013]: the Time-of-Week and-
Temperature model with the addition of a weighting factor to give more statistical weight to days 
that are nearby to the day being predicted. This is achieved by fitting the regression model using 
weights that fall off as a function of time in both directions from a central day. 
M7. Ensemble approach combining nearest neighbors and a generalized linear model, developed 
by Lucid Design Group.  
M8. Combination Multivariate Adaptive Regression Splines (MARS) and other advanced 
regression. 
 
M9. Combination bin modeling and other advanced regression, developed by Performance 
Systems Development of New York, LLC. 

M10. Nearest neighbor advanced regression. 

2.4 Performance Metrics 
There are many possible metrics that can be used to quantify the accuracy of model predictions. 
Different metrics provide different insights into aspects of performance. To identify those most 
relevant and useful in understanding model performance for M&V of energy savings, a group of 
approximately twenty industry representatives from the evaluation, implementation and utility 
program management community were consulted. This group comprised the Technical Advisory 
Group (TAG) that was referenced in the Introduction. These subject matter experts were asked to 
select from several candidates such as Total Bias (TB), Total Error (TE), Mean Bias (MB), Mean 
Absolute Percent Error (MAPE), Normalized Mean Bias Error (NMBE), Root Mean Square Error 
(RMSE), Coefficient of Variation of the Root Mean Squared Error (CV (RMSE)) and Coefficient 
of Determination (R2).  These metrics are defined in the appendix.  
 
Through discussions with the TAG, it was determined that focusing on two primary metrics 
would be most useful in characterizing model performance. This is because there is significant 
overlap between many of the candidate metrics (many are variants of others), and because it 
becomes more difficult to aggregate results and draw meaningful conclusions as the number of 
metrics increases. Members of the TAG voted on their top two metrics of choice, and there was 
surprisingly strong consensus that the two most important for M&V applications were normalized 
mean bias error (NMBE) and coefficient of variation of the root mean squared error 
(CV(RMSE)).  
 
These two metrics provide a nice complement in understanding model performance for M&V 
applications. NMBE gives a sense of the total difference between model predicted energy uses, 
and actual metered energy use, with intuitive implications for the accuracy of avoided energy use 
calculations. CV (RMSE) gives an indication of the model’s ability to predict the overall load 
shape that is reflected in the data. CV (RMSE) is also familiar to practitioners, and prominent in 
resources such as ASHRAE Guideline 14.  
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NBME and CV (RMSE) are defined in Equations 1 and 2 below, where yi  is the actual metered 
value, ŷi  is the predicted value, y is the average of the yi , and N is the total number of data 
points.  
	
  

𝑁𝑀𝐵𝐸 =   
!
! (!!!!!)!

!

!
×100	
   	
   (1) 

 

𝐶𝑉 𝑅𝑀𝑆𝐸 =
!
! !!!!! !!

!

!
×100  (2) 

 
	
  
In the case of CV (RMSE), results are presented for 15-minute and daily totals of energy use 
across the prediction period; for NMBE, by definition, the metric captures the percent error in 
measured versus predicted energy use for the full prediction period.  

 
2.5 Time Horizons 
In keeping with the current standard practice and guidelines for whole-building avoided energy 
use calculations [ASHRAE 2014], the analyses in this study are grounded in a 12-month ‘post’ or 
model prediction period. We assess the degradation in prediction accuracy when ‘pre’ or model 
training period is reduced from 12-months to shorter time horizons. Specifically, results are 
presented for 12-month, 9-month, 6-month and 3-month training periods. Note that not all 
buildings from the test dataset had a full 24 months of electricity and outside air temperature data. 
Therefore, the models were tested on different numbers of buildings for each training period; for 
the 12-month, 9-month, 6-month and 3-month training periods the number of buildings were 441, 
470, 530 and 537 respectively. 
	
  

3. RESULTS 
Some buildings are predictable, and others are not; therefore, to understand the predictive 
accuracy of the models, and their promise for streamlining M&V, it is necessary to test them 
across many buildings. Moreover, simply reporting the mean or median does not give a full 
picture of the fraction of buildings in the population for which accuracy is exceptionally high or 
low; therefore the results present distributions, i.e., percentiles, of the performance metrics over 
the full population of buildings in the data set. 
 
Most models were unable to generate predictions for at least some of the buildings in the data set 
– summarized in Table 2, failure rates ranged from roughly zero to ten percent depending on the 
training period and particular model in question. In the Table, the total number of failures is 
shown first, with the percentage of failures (failed buildings divided by total buildings), is shown 
in parentheses. These aspects of performance are likely due to differences in the underlying form 
of the models, how they were coded to run automatically in batch mode, their treatment of 
outliers in the training data, and the different mathematical approaches that they each use.  
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Table 2. Number of failures for each model, for a 12-month prediction period and 12-month, 9-
month, 6-month, and 3-month training periods 

 
Model 12 months 9 months 6 months 3 months 

# Buildings 441 470 530 537 
M1 0 (0 %) 0 (0 %) 3 (0.57 %) 4 (0.75 %) 
M2 26 (5.90  %) 24 (5.11 %) 34 (6.42 %) 34 (6.33 %) 
M3 7 (1.59 %) 15 (3.19 %) 16 (3.02 %) 13 (2.42 %) 
M4 0 (0 %) 0 (0 %) 0 (0 %) 0 (0 %) 
M5 0 (0 %) 0 (0 %) 0 (0 %) 0 (0 %) 
M6 0 (0 %) 0 (0 %) 0 (0 %) 0 (0 %) 
M7 24 (5.44 %) 37 (7.87 %) 56 (10.57 %) 38 (7.08 %) 
M8 8 (1.81 %) 6 (1.28 %) 18 (3.40 %) 65 (12.10 %) 
M9 20 (4.54 %) 4 (0.85 %) 4 (0.75 %) 4 (0.75 %) 

M10 0 (0 %) 0 (0 %) 0 (0 %) 2 (0.37 %) 
 

3.1 Normalized Mean Bias Error 
Normalized mean bias error across the full population of buildings in the test dataset is shown for 
each model, in Figure 4. In these ‘box-and-whisker’ plots, the mean error is shown with a white 
circle; for some models, the mean error is literally off of the chart, and not plotted. The top of 
each ‘whisker’ represents the error for the 90th percentile in the population of test buildings, and 
the bottom represents the 10th percentile; note that for some models, these two percentiles are also 
off of the chart, and thus not displayed. The top and bottom of each box represent the 75th and 
25th percentiles, respectively, and the horizontal line in each box marks the median, or 50th 
percentile. The number of buildings in the test dataset by training period is shown in the title at 
the top of each plot.  
 
While Figure 4 shows percentiles of errors across the full population of buildings and training 
periods that were analyzed, Table 3 summarizes just the 25th, 50th (median) and the 75th 
percentiles error as the training period is reduced from twelve, to nine, to six, to three months. 
This provides insight into the general degradation in performance that is seen as the model 
training period is reduced, while the prediction period is held fixed at twelve months.  	
  
 
The results displayed in Figure 4 and Table 3 show that for the majority of csaes there was a 
tendency of a bias toward over-predicting the energy use (NMBE negative). However, this may 
be a result of actual decreases in building energy use over time, as opposed to a characteristic of 
the models. In addition, when the training period was shortened from twelve months to nine and 
to six the average model NMBE at the 25th, 50th and the 75th percentile (absolute values taken to 
account for changes in sign), was stable. However, the NMBE increased modestly with six 
months of training data, and notably with only three months of training data. 
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Figure 4. Distributions of NMBE for each model for a 12-month prediction period, and 12-month, 9-
month, 6-month and 3-month training period.	
  

	
  
	
  

Table 3. Percentiles of the NMBE for each model, for a 12-month prediction period and 12-month, 9-
month, 6-month, and 3-month training periods	
  

	
  

Model 12 months 9 months 6 months 3 months 
25th 50th 75th 25th 50th 75th 25th 50th 75th 25th 50th 75th 

M1 -5.93 -1.7 3.09 -6.78 -2.02 2.95 -9.88 -4.19 1.47 -23.25 -12.77 -1.77 
M2 -4.8 -0.63 4.95 -4.71 -0.68 3.15 -4.71 -0.73 3.47 -3.38 1.3 13.16 
M3 -3.94 0.35 5.65 -4.65 -0.2 4.85 -5.66 -0.67 4.77 -4.5 -0.17 4.45 
M4 -10.51 -1.93 2.43 -12.07 -1.07 3.32 -9.97 -2.22 1.93 -9.07 -2.66 2.85 
M5 -5.85 -1.25 3.86 -5.73 -1.26 2.84 -6.23 -1.79 2.26 -4.48 0.21 5.06 
M6 -4.9 -0.73 3.67 -5.2 -0.92 3.06 -5.3 -0.88 2.6 -5.54 -0.81 4.17 
M7 -7.18 -2.97 2.08 -6.93 -2.62 1.62 -7.77 -3.57 1.02 -11 -3.19 5.81 
M8 -4.67 -0.51 4.31 -5.31 -0.88 2.81 -4.07 -0.36 4.01 -3.63 1.38 9.1 
M9	
   -5.18	
   -1.1	
   3.35	
   -5.26	
   -0.98	
   3.25	
   -5.94	
   -1.65	
   2.67	
   -9.96	
   -3.5	
   1.88	
  

M10	
   -4.45	
   -0.32	
   5.1	
   -4.07	
   -0.55	
   3.56	
   -4.46	
   -0.84	
   3.12	
   -3.51	
   1.14	
   10.23	
  
Avg. of 

Absolute 
Values	
  

5.74 
	
  

1.15 
	
  

3.85 
	
  

6.07 
	
  

1.12 
	
  

3.14 
	
  

6.4 
	
  

1.69 
	
  

2.73 
	
  

7.83 
	
  

2.71 
	
  

5.85 
	
  

	
  

3.2 CV(RMSE) 
Figure 5 follows the same conventions as those in Figure 4, showing distributions of errors across 
the population in the test dataset, for the CV(RMSE) performance metric, calculated for 15-
minute energy totals. As in Table 3, Table 4 summarizes the 25th, 50th and the 75th percentiles 

● ●

●

●

−25.0
−22.5
−20.0
−17.5
−15.0
−12.5
−10.0
−7.5
−5.0
−2.5

0.0
2.5
5.0
7.5

10.0
12.5
15.0

M1 M2 M3 M4 M5 M6 M7 M8 M9 M10
model

N
M

BE
 (%

)

NMBE (N=441) 12 month training

●
●

●
●

−25.0
−22.5
−20.0
−17.5
−15.0
−12.5
−10.0
−7.5
−5.0
−2.5

0.0
2.5
5.0
7.5

10.0
12.5
15.0

M1 M2 M3 M4 M5 M6 M7 M8 M9 M10
model

N
M

BE
 (%

)

NMBE (N=470) 9 month training

● ●

●

●

−25.0
−22.5
−20.0
−17.5
−15.0
−12.5
−10.0
−7.5
−5.0
−2.5

0.0
2.5
5.0
7.5

10.0
12.5
15.0

M1 M2 M3 M4 M5 M6 M7 M8 M9 M10
model

N
M

BE
 (%

)

NMBE (N=530) 6 month training

● ●

●

●

−25.0
−22.5
−20.0
−17.5
−15.0
−12.5
−10.0
−7.5
−5.0
−2.5

0.0
2.5
5.0
7.5

10.0
12.5
15.0

M1 M2 M3 M4 M5 M6 M7 M8 M9 M10
model

N
M

BE
 (%

)

NMBE (N=537) 3 month training



	
   15	
  

error as the training period is reduced from twelve, to nine, to six, to three months. This provides 
insight into the general degradation in CV(RMSE) that is seen as the model training period is 
reduced, while the prediction period is held fixed at twelve months. 
 
Figure 5 and Table 4 show that when the training period was shortened from twelve months to 
nine, six, and three months, there was a gradual degradation in predictive accuracy - the average 
median CV(RMSE) for 15min energy totals increased from 19.73 to {21.12, 23.54 and 28.58} 
respectively. 

	
  

Figure 5. Distributions of CV(RMSE) for 15-minute energy totals for each model, for a 12-month 
prediction period, and 12-month, 9-month, 6-month, and 3-month training periods.   

 
 

Table 4. Percentiles of the CV(RMSE) for 15-minute energy totals for each model, for a 12-month 
prediction period and 12-month, 9-month, 6-month, and 3-month training periods	
  

 

Model 12 months 9 months 6 months 3 months 
25th 50th 75th 25th 50th 75th 25th 50th 75th 25th 50th 75th 

M1 14.32 19.91 30.06 15.84 22.79 33 19.17 27.62 36.94 28.81 42.4 56.8 
M2 12.58 18.06 29.22 12.44 18.33 30.29 13.71 20.4 32.88 14.82 25.84 40.52 
M3 12.33 17.81 28.84 12.5 18.75 31.17 13.71 20.28 31.78 14.85 21.37 31.37 
M4 15.5 22.8 35.89 15.76 24.34 40.68 16 24.18 38.75 16.38 23.74 35.88 
M5 13.78 20.16 31.11 13.96 20.78 32.27 14.69 22.09 33.36 15.98 22.49 33.21 
M6 13.47 19.53 30.01 13.71 20.06 31.3 14.49 21.26 32.27 16.11 23.12 35.25 
M7 13.78 19.32 26.77 13.89 19.41 27.14 15.13 21.19 28.02 18.42 27.22 43.12 
M8 12.89 19.39 34 13.61 20.69 34.1 14.28 23.59 35.68 15.26 28.18 45.62 
M9	
   12.87	
   20.77	
   55.42	
   13.62	
   25.69	
   55.87	
   15.85	
   31.7	
   55.31	
   19.01	
   42.69	
   60.09	
  

M10	
   13.04	
   19.6	
   33.25	
   13.24	
   20.36	
   33.12	
   15.47	
   23.13	
   36.63	
   16.8	
   28.74	
   42.97	
  
Avg. 	
   13.46	
   19.73	
   33.46	
   13.86	
   21.12	
   34.89	
   15.25	
   23.54	
   36.16	
   17.64	
   28.58	
   42.48	
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In contrast to the 15-minute CV(RMSE) results shown in Figure 5, Figure 6 shows the results for 
the CV(RMSE) performance metric, when calculated for daily energy totals. As expected, errors 
for the daily CV(RMSE) are smaller than those for the 15-minute energy values. Table 5 
summarizes just the 25th, 50th and the 75th percentiles error for daily energy totals as the training 
period is reduced from twelve, to nine, to six, to three months.  
 
Figure 6 and Table 5 show that when the training period was shortened, there was a gradual 
degradation in predictive accuracy - the average median CV(RMSE) for 15min energy totals 
increased from 12.93 to {13.76, 15.43 and 20.47} respectively. For the standard whole-building 
case of twelve months training followed by twelve months of prediction and for all the models 
except the model 4, which is a very naïve model, the prediction accuracy in term of CV(RMSE) 
were less than 25 for more than 75% of buildings. For 6 and 9 months of training data, 
CV(RMSE) for most models was also within 25.	
  
	
  

	
  
	
  

Figure 6. Distributions of CV(RMSE) for daily energy totals for each model, for a 12-month 
prediction period, and 12-month, 9-month, 6-month, and 3-month training periods.  	
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Table 5. Percentiles of the CV(RMSE) for daily energy totals for each model, for a 12-month 

prediction period and 12-month, 9-month, 6-month, and 3-month training periods 
 

Model 12 months 9 months 6 months 3 months 
25th 50th 75th 25th 50th 75th 25th 50th 75th 25th 50th 75th 

M1 10.4 15.69 23.74 11.94 19.35 27.76 15.89 23.63 31.18 28.7 40.18 50.04 
M2 7.66 11.72 22.27 7.54 12.18 21.69 8.15 13.16 21.77 8.56 15.93 31.53 
M3 7.19 11.66 22.43 7.47 11.93 22.52 8.22 13.1 23.09 8.88 15.88 31.84 
M4 10.41 16.91 31.25 10.39 17.57 32.18 10.8 18.67 30.95 11.34 19.45 33.31 
M5 8.92 12.69 22.81 8.85 12.77 22.19 9.14 13.65 22.35 9.81 17.18 32.96 
M6 8.52 12.2 22.19 8.48 12.67 22.05 8.75 13.76 22.34 9.62 16.17 30.5 
M7 8.78 11.79 19.65 8.46 11.81 19.73 8.53 12.4 19.78 9.9 15.98 33.95 
M8 7.87 11.96 22.79 7.98 12.76 25.37 8.15 14.09 26.71 9.05 16.88 30.72 
M9	
   7.73	
   11.94	
   23.64	
   8.27	
   13.45	
   26.18	
   10.03	
   17.45	
   28.84	
   12.19	
   29.34	
   47.59	
  

M10	
   8	
   12.78	
   23.91	
   8.22	
   13.06	
   22.53	
   9.06	
   14.44	
   23.27	
   9.5	
   17.72	
   32.53	
  
Avg. 	
   8.55	
   12.93	
   23.47	
   8.76	
   13.76	
   24.22	
   9.67	
   15.43	
   25.03	
   11.76	
   20.47	
   35.5	
  

 
3.3 NMBE vs. CV(RMSE)  
Given that stakeholders generally saw value in assessing model performance according to two 
complementary metrics, it is useful to consider both metrics simultaneously. Figure 7 shows 
median NMBE vs. CV(RMSE) for daily energy totals, for a twelve, nine, six and three months 
training and twelve month prediction period, for each model that was tested. This view into the 
results allows a comparison of relative model performance, across both metrics. Models that 
appear closest to the left hand corner between the vertical and the horizontal red lines of the plot 
are those that minimize both CV(RMSE) and NMBE. For increased clarity the upper bound   of 
the y-axis corresponding to CV(RMSE) was fixed at 25, which prevented display of Models 1 
and 9 from the graph for the 3-month training period (bottom right). 
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Figure 7.  Median NMBE vs. CV(RMSE) for daily energy totals, for each model tested, a 12-month 
prediction period, and 12-month, 9-month, 6-month, and 3-month training periods.  	
  

	
  

3.4 Results by Climate Zone  
 
Figures 8 and 9 shows the results of NMBE and CV(RMSE) for daily energy totals for regions 
independently, to supplement the aggregated findings that were detailed in Sections 3.1 through 
3.3. In each plot, distributions of errors across the California dataset are shown in pink and 
plotted first, those for the Washington, DC dataset are shown in green and plotted second, and 
those for the Seattle dataset are shown in blue and plotted last. The number of buildings for which 
model predictions were generated is shown in the plot title, and the model IDs are displayed in 
grey across the top of each plot. These plots indicate that the median and the distribution of errors 
for the California data set (n=209) were modestly smaller than those for the Northwest (n=30), 
and those for Washington DC (n=198) were notably larger than both California and the 
Northwest.  
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Figure 8. Distributions of NMBE by climatic region, for each model, for a 12-month prediction 
period, and 12-month, 9-month, 6-month, and 3-month training periods. 

	
  

	
  
 

Figure 9. Distributions of CV(RMSE) for daily energy totals by climatic region, for each model, for a 
12-month prediction period, and 12-month, 9-month, 6-month, and 3-month training periods. 
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4. DISCUSSION  

4.1 Absolute Model Performance 

 
Overall, the interval data models that were tested were able to predict whole-building energy use 
with a high degree of accuracy for a large portion of the 537 buildings in the test dataset. For the 
standard whole-building case of twelve months training followed by twelve months of prediction, 
and for all models there was a tendency of a bias toward over-predicting energy use (negative 
NMBE), which has potential implications for pay-for-performance incentive designs. Average 
CV(RMSE) for daily energy totals was less than 13 for half of the buildings, and less than 24 for 
three quarters of them (except for model 4, a very naïve, simple model).  
 
This is promising for the industry. ASHRAE Guideline 14 specifies that CV(RMSE) during the 
training period, should be less than 25% if 12 months of post-measure data are used, and no 
uncertainty analysis is to be conducted [ASHRAE 2014]. The analyses in this study computed 
CV(RMSE) during the prediction period, which is expected to be even higher than that in the 
training period. Therefore, while not directly comparable, it appears that the models in this study 
are likely to meet the ASHRAE requirements for a large fraction of buildings. Median 
CV(RMSE) for 15-minute and daily energy totals was less than 25% for every model tested when 
twelve months of training data were used. With even six months of training data, median 
CV(RMSE) for daily energy total was under 25%  for all models tested.  
 
Moreover, with NMBE ranging from approximately -1 to 4 for one quarter of the buildings in the 
dataset, and approximately -1 to -5 for another quarter, the results provide confidence that these 
M&V approaches will be applicable for many instances of multi-measure programs. This is 
because multi-measure programs commonly target larger savings, on the order of ten percent or 
more (for example, median retro-commissioning savings are 16% (Mills 2011)); with errors of 
just a couple of percent, there is less risk that savings will be ‘lost in the noise’. In addition, the 
accuracies achieved in this study were for a fully automated case. In practice, errors can be 
further reduced with the oversight of an engineer to conduct non-routine adjustments where 
necessary. For example, occupancy is not commonly available measured data, and therefore not 
included in the dataset, or as explanatory variables in the models. Were the buildings to 
experience significant changes in occupancy, non-routine adjustments might be merited, and 
could improve the accuracy of the savings that are quantified.  
 
When the training period was shortened from twelve months to nine, and then to six, there was a 
gradual degradation in predictive accuracy. Not surprisingly, a three-month training period was 
not long in general enough to capture the range of temperatures necessary to reliably predict 
energy over a the full range of temperatures and loads that are seen in a twelve-month period. 
Given the desire to shorten total time requirements for M&V, the modest increases in error 
incurred in shortening the training period, in some cases, even to six or three months, may be 
worth reducing the total time necessary to acquire data for the baseline period.  

4.2 Climatic Differences 
 
The test dataset that was compiled for this analysis comprised whole-building data that 
represented a dataset of convenience, as opposed to design. Ideally, the buildings would be 
uniformly distributed across all climate zones, however it was not possible to obtain that level of 
diversity for this study. The data that were acquired were skewed to buildings from California 
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(ASHRAE Climate Zone 3), and Washington, DC (ASHRAE Climate Zone 4), with much less 
representation from other climates. An analysis of predictive accuracy was conducted for regions 
independently, to supplement the aggregated findings that also presented. Regional differences in 
model performance were observed; the median and distribution of errors for the California data 
set (n=209) were modestly smaller than those for the Northwest (n=30), and those for 
Washington DC (n=198) were notably larger than both California and the Northwest. This may 
be due to more extreme seasonal variations in outside air temperature in the Mid-Atlantic region. 
As the California dataset was provided by a participating model developer, while the Northwest 
and Washington DC datasets were contributed by non-developers, there is also a possibility that 
the California buildings were less randomly selected from the general commercial stock. 
 

4.3 Relative Model Performance 
	
  
For the most part, each of the ten models performed equally well, according to the two metrics of 
focus in this study. When plots of median NMBE vs. CV(RMSE) were compared for the standard 
case of twelve months training and twelve months prediction, Models 1, 4, and 7 emerge as 
modest outliers; the other models analyzed are relatively tightly clustered together. When non 
industry-standard shorter training periods (nine, six, and three months) were considered, Models 
1, 4, 7, and 9 emerged with relatively higher errors than the other models. However it is important 
to emphasize that only the median performance was investigated, and in many cases, the 
magnitude of the difference in errors between models was quite small. In spite of these relative 
differences in model performance, it is worth reiterating that absolute performance for all models 
tested was strong, and provided compelling evidence for their application to whole-building 
measurement and verification.   
	
  
The results section also noted that for some models, the mean error was extremely large. The fact 
that some buildings are simply not predictable based purely on outside air temperature, date and 
time is not surprising; there are buildings that are not operated in a predictable manner, for which 
other drivers of energy use are at play, or for which non-routine adjustments may be appropriate. 
Interestingly, in some cases the buildings that were poorly predicted by one model, were not the 
same as the buildings that were predicted poorly by the other models. In addition, most models 
were unable to generate predictions for at least some of the buildings in the data set – failure rates 
ranged from roughly zero to ten percent depending on the training period and particular model in 
question. These aspects of performance are likely due to differences in the underlying form of the 
models, how they were coded to run automatically in batch mode, their treatment of outliers in 
the training data, and the different mathematical approaches that they each use.  
	
  

5. CONCLUSIONS AND FUTURE WORK 
The results of this work show that interval data baseline models, and streamlining through 
automation hold great promise for scaling the adoption of whole-building measured savings 
calculations using Advanced Metering Infrastructure (AMI) data. These results can be used to 
build confidence in model robustness, and also to pre-vet M&V plans for specific projects, given 
project requirements for uncertainty in reported savings. While uncertainty is not commonly 
considered today, it could hold value for evaluating and reducing project and investment risk. For 
example, ASHRAE’s published methods for computing fractional savings uncertainty depend on 
depth of savings, length of the training and prediction periods, and model CV(RMSE). “Look-up” 
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tables can be used to explore the likelihood that a given model will produce savings estimations 
that meet uncertainty and confidence requirements, for a specific set of buildings and expected 
depth of savings. After an efficiency project is initiated, these methods can be used as the project 
progresses to track achieved savings relative to expected savings, and perhaps even be used to 
indicate when measures are not correctly implemented, or when non-routine changes have 
occurred in the building operations or loads. 
 
Future work will focus on four key areas: 1) demonstration of these automated approaches in 
partnership with utilities, using data from buildings that have participated in whole-building 
programs or pilots; 2) exploration of industry demand for the objective model testing methods as 
presented in this paper, and identification of appropriate bodies to which the procedures should be 
transferred; 3) continued engagement of the evaluator, program manager and implementer 
community to collectively more clearly define uncertainty and confidence requirements for 
reporting gross energy savings; 4) investigation of how these approaches that use  measured pre-
measure energy use data as the baseline from which savings are calculated, can compare with 
evaluation requirements to consider code baselines.  
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APPENDIX 

Statistical Goodness-of-Fit Metrics  
Goodness-of-fit metrics are commonly referred to with a diversity of names, and may be defined 
with subtle variations depending on their application. For clarity, the metrics that were considered 
for use in this study are defined in the following, with some discussion of their use specifically in 
the context of measurement and verification.  
 
Symbols that are used in the equations are as follows:  

• N is the number of individual measurement points in an evaluation period 
• 𝑦! is the energy measured at the ith time interval 
• 𝑦! is the energy predicted at the ith time interval 
• 𝑦 is the mean energy use over the evaluation period  

 
Total Bias (TB) 
This metric measures the total difference between the measured and model-predicted energy over 
a pre-determined evaluation period (e.g., three, six, or twelve months). 
  

𝑇𝐵 = 𝑦! − 𝑦!

!

!

 

 
This metric is called “bias” rather than “error” because error is sometimes used to refer to the 
absolute difference between model predictions and measurements, ignoring the sign of the 
difference, whereas bias is specific to maintaining the sign of the difference. In general, bias is 
preferred when estimates of over- and/or under-prediction, or net differences, are noteworthy. For 
example, the metric could help ascertain whether an M&V payback program might in general 
over- or under-compensate for retrofit energy savings. 
 
Some reference documents define total bias as the observations minus the model predictions, and 
other documents define it as model predictions minus observations.  Neither are incorrect, but 
their random use can be quite confusing since one cannot easily know, without looking at the 
equation, whether a positive bias means the model is over or under predicting the metered data. 
The tendency in ASHRAE Guideline 14-2014 is to subtract the model predictions from the data, 
and that convention is retained in this work. Hence, a positive bias means the model predicts 
lower energy use than was observed, and the magnitude of the difference is the energy (kWh) 
between the total energy predicted and measured (kWh). 
 
Total Error (TE) 
Total Error is similar to Total Bias, however it considers the absolute difference between model 
predictions and measurements over the evaluation period, ignoring the sign of the difference. This 
metric helps ascertain the overall performance of the model since both over- and under-prediction 
by the model are compiled. For the purposes of an M&V program, this metric is best considered 
as a compliment to a metric of bias. 
  

𝑇𝐸 = 𝑦! − 𝑦!

!

!
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Mean Bias (MB) 
Mean Bias is the total bias divided by the number of measurement points in the evaluation period. 
For example, an evaluation period of three months may have weekly, daily, or 15-minute 
measurements. The mean bias provides the expected under- or over-prediction of the model. This 
metric might be useful in applications when one desires to review how a model performs, in 
general, for any one-measurement comparison. However, this is usually not the scenario for most 
M&V applications, for a single building or across a portfolio of buildings. 

𝑀𝐵 =
1
𝑁

(𝑦! − 𝑦!)
!

!

 

 
 
Mean Absolute Percent Error (MAPE) 
This metric is the total normalized bias averaged over each of the energy measurements, or 
subtotaled over fixed time intervals, for the evaluation period. The metric provides an overall 
assessment of the general percent error in model-predicted energy use, as one proceeds through 
the evaluation period. 
 

𝑀𝐴𝑃𝐸 =   
1
𝑁

𝑦! − 𝑦!
𝑦!

×100
!

!

 

 
Because the metric is normalized by the meter reading, it provides an equitable measure of model 
performance for predicting both high and low energy. This metric is popular for providing a 
general assessment of model performance since it normalizes the size of errors that are due to 
larger versus smaller building loads, and can be averaged over each measurement or fixed time 
interval. This metric is also referred to as mean normalized error. 
 
Normalized Mean Bias Error (NMBE) 
This metric is effectively a total percent error over the evaluation period, e.g., -5% error would 
indicate that the model over predicted the actual metered energy use by 5%. In this context, the 
use of percent differences rather than absolute differences normalizes the size of errors that are 
due to larger versus smaller building loads. Similarly, the directionality of the error reveals under- 
versus over-predictions, which has an implication on over- versus under-payment, when pay-for-
performance is a consideration. Variations of this metric are also referred to as percent total bias, 
absolute percent bias error, or net determination bias. 

𝑁𝑀𝐵𝐸 =   
1
𝑁 (𝑦! − 𝑦!)!

!

𝑦
×100 

 
Root Mean Squared Error (RMSE) 
This is a popular metric that measures the average squared difference between predictions and 
data over the evaluation period. This metric is preferred over mean bias when one desires to 
assess large differences between model predictions and measurements (owing to the squaring of 
the differences) and when total energy is more relevant than relative energy (owing to no 
normalization). 
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𝑅𝑀𝑆𝐸 =   
1
𝑁

𝑦! − 𝑦! !
!

!

 

 
 
Large differences at even one of the time intervals will result in disproportionately high values of 
root mean squared error. In the context of comparing M&V models the use of this metric will 
thus tend to highlight those models that follow the general temporal trend in the measured energy. 
Models with low RMSE will tend to predict high energy use when metered energy use is high, 
and the model will predict low energy use when the metered energy use is low. 
 
Coefficient of Variation of the Root Mean Squared Error (CV(RMSE)) 
This is the RMSE normalized by the mean energy use over the evaluation period. This measure is 
particularly helpful when reviewing model-to-data comparisons of several buildings 
simultaneously, because it regulates the relative performance in buildings that use high amounts 
of energy against those that use low amounts of energy. The equation is similar to a coefficient of 
variation (which is the standard deviation divided by the mean) in that it provides the difference 
between predictions and data relative to the mean overall energy. 
 

𝐶𝑉 𝑅𝑀𝑆𝐸 =

1
𝑁 𝑦! − 𝑦! !!

!

𝑦
×100 

 
Coefficient of Determination (R2 or R Squared) 
This metric measures how well interval energy data agree with a linear relationship to model 
predictions, at the same time intervals over the evaluation period. There is often some confusion 
on whether model predictions are compared the actual data, or vice versa, whether the actual data 
are compared to the model predictions. The choice results in a different value of R Squared. In 
the M&V application, both options are possible, so the convention should be explicitly stated 
when reporting values of the metric. 
 

𝑅! = 1 −
𝑦! − 𝑦! !!

!

𝑦! − 𝑦 !!
!
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Description of Models Tested  
 
For cases in which the model developer consented, more detailed descriptions of the baseline 
models are provided below. 
 
M4: Mean Week 
In this model the predictions of the future values, for a given day of the week d and time t, are 
equal to the average of the training data for this particular day and time, then we can write the 
predictions as  

𝑦 𝑑, 𝑡 =
1

𝑁(𝑑, 𝑡)
𝑦(𝑑! , 𝑡!)

!(!,!)

!!!

 

where 𝑦(𝑑! , 𝑡!) is the value of the ith week of the training data, and 𝑁(𝑑, 𝑡) is the number of 
weeks in the training data, which have values for the day of the week d and time t. 
 
M5: Time of Week and Temperature 
In the Time of Week and Temperature model, the predicted load is a sum of two terms: (1) a “time 
of week effect” that allows each time of the week to have a different predicted load from the 
others, and (2) a piecewise-continuous effect of temperature. The temperature effect is estimated 
separately for periods of the day with high and low load, to capture different temperature slopes 
for occupied and unoccupied building modes. The model is described in detail in Mathieu et al. 
(2011), and the method is described in detail in Granderson et al. (2013).  

For each day of the week, the 10th and 90th percentile of the load were calculated; call these L10 
and L90. The first time of that day at which the load usually exceeds the L10 + 0.1*(L90-L10) is 
defined as the start of the “occupied” period for that day of the week, and the first time at which it 
usually falls below that level later in the day is defined as the end of the “occupied” period for 
that day of the week. 

 
M6: Weighted Time of Week and Temperature 

This model is the Time-of-Week and-Temperature model with the addition of a weighting factor 
to give more statistical weight to days that are nearby to the day being predicted. This is achieved 
by fitting the regression model using weights that fall off as a function of time in both directions 
from a central day. In the implementation used in this work, the weight parameter is set to 
fourteen, placing more weight on the most recent two weeks of data.  
 

M7. Ensemble approach combining nearest neighbors and a generalized linear model, developed 
by Lucid Design Group.  

 
Lucid’s model employed a sequential ensemble approach, first generating predictions using K-
nearest-neighbors (KNN), and then adjusting the KNN output with help of a ridge regression 
model. The intuition underlying this approach is that KNN is generally strong in capturing 
nonlinearities in the relationship between prediction and outcome variables, especially for low-
dimensional problems. However, its applicability is bounded by the availability of sufficiently 
“nearby” neighbors for each prediction made.  
 
In an M&V context, this problem might manifest as negative bias when predicting demand on hot 
days, especially if the training set spans a period of mostly cooler temperatures, because of either 
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seasonal or year-to-year variation. We address this limitation by adjusting each KNN prediction 
to account for this potential bias. Our prediction process works as follows: 
 
First, we solve a linear model of the following form, minimizing least squares, and using ridge 
regularization penalty, tuned using leave-one-out (LOO) cross-validation. 
 

𝑦!,! =   𝛼! + 𝛼!  𝑇𝑒𝑚𝑝!,! + 𝛼!  𝑇𝐴!,! + 𝛼!  𝑇𝐵!,! + 𝛼!!!

!"

!!!

𝐼 𝑖 = 𝑛  

 
Where Temp refers to temperature in Fahrenheit, TA and TB are transformed temperature 
variables as defined below, and the remaining terms are indicator variables for each of 96 quarter 
hour periods in a day. 
 

𝑇𝐴!,! =
0                                                        𝑇! < 65!𝐹
(𝑇!,! − 65!𝐹)!            𝑇! ≥ 65!𝐹 

 

𝑇𝐵!,! =
0                                                        𝑇! ≥ 65!𝐹
(𝑇!,! − 65!𝐹)!            𝑇! < 65!𝐹 

 
 
We then calculate five representative features of each 24-hour period in the training set. We 
define the notion of distance between days to be a weighted Euclidian distance in the resulting ℝ! 
coordinate space. 
 
 

Features Weights 
Maximum daily temperature 1.0 
Minimum daily temperature 1.0 
Business day (binary indicator) 2.0 
Winter seasonal factor 0.5 
Summer seasonal factor 0.5 

 
To derive the summer and winter seasonal factors, we picked two “diametrically opposed” dates 
– January 15th and July 15th – to represent the midpoint of the summer and winter seasons from a 
meteorological standpoint. We then calculated a value in the range [0, 1] to represent the distance 
from that seasonal midpoint for each date. Here, DayDelta refers to the absolute difference 
between two dates, measured in days. 
 

  𝑆𝑢𝑚𝑚𝑒𝑟  𝐹𝑎𝑐𝑡𝑜𝑟! =
max 0, 90 −   𝐷𝑎𝑦𝐷𝑒𝑙𝑡𝑎 𝐷𝑎𝑡𝑒! , 𝐽𝑢𝑙𝑦  15𝑡ℎ

90
 

 

  𝑊𝑖𝑛𝑡𝑒𝑟  𝐹𝑎𝑐𝑡𝑜𝑟! =
max 0, 90 −   𝐷𝑎𝑦𝐷𝑒𝑙𝑡𝑎 𝐷𝑎𝑡𝑒! , 𝐽𝑎𝑛𝑢𝑎𝑟𝑦  15𝑡ℎ

90
 

 
 
Predictions are then made one day at a time, in two phases. In the first phase, we use a KNN to 
approach to select K similar days, where K is the lesser of 15 and 20% of the number of days 
available in the training set. The demand from those K days is combined interval-by-interval 
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using a weighted average, where the weight for each day decreases with increasing distance from 
the day being predicted. 
 

  𝑤𝑒𝑖𝑔ℎ𝑡! ∝
1

1 + 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝐷𝑎𝑡𝑒!"#$%&'%(), 𝐷𝑎𝑡𝑒!)
 

 
The output of this step is 96 values 𝑞!,! predicting demand each quarter hour interval i of the day 
d being predicted. The second and final step is to adjust that result using our linear model from 
the first step. To do that, we use our linear model to predict demand 𝑟!,! for each interval i of each 
day d and in our set of nearest neighbors. We also use the same linear model to predict demand 
for the day being predicted. 
 
Finally, we take the interval-by-interval difference between the nearest neighbor predictions and 
the target day prediction, and adjust the KNN output by those differences to generate a final 
prediction: 
 

  𝑦!,! = 𝑞!,! − 0.6  × 𝑤𝑒𝑖𝑔ℎ𝑡! 𝑟!,! − 𝑟!"#$%&'%(),!

!

!!!

 

 
We inserted the 0.6 factor because we found that applying the full adjustment overcompensated 
for the local biases of KNN alone, and reduced the RMSE in cross validation trials. Future 
improvements on this approach might attempt to tune that value as a parameter rather than use a 
“magic number.” 

 

 

	
  




